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QUELQUES OBSERVATIONS SUR LES 
L2-RESOLVANTES 

PAR 

RADU Z A H A R O P O L  

ABSTRACT 

Cet article a deux parties. Dans la premiere nous allons 6tudier les normes des 
op6rateurs d'une L2-r6solvante. Dans la deuxi~me pattie on va associer & 

chaque L2-rdsolvante (Go)~>o un processus (~)~>o (l'id6e de consid6rer ce 
processus appartient & I. Cuculescu). En ce qui concerne ce processus (fo), ~o on 
va montrer que si (G~)o>o est une L2-r6solvante qui correspond & un espace de 

Dirichlet fortement r6gulier sur (E, ~,  # ) o~ E est un espace m6trique compact, 
est le corp bor61ien engendr6 par les ouverts de E et ~ est une probabilit6 

(ou une mesure finie), alors I'ensemble des zeros de chaque f~ est un ensemble 

ferm6 avec l'int6rieur vide. 

I. Les op~rateurs d'une L2-r6solvante et leurs normes 

Soit ( E , ~ )  un espace mesurable et # une mesure o'-finie, (G.).>o une 

L~-r6solvante et (X,H) respace de Dirichlet associ6 (voir [3]). 

Nous ailons noter par II II la norme canon sur L20z) et par 11 Jl- la norme 

induite par le produit scalaire 

H~(x,y)=H(x,y)+o~(x,y) surX. 

Alors (G.f• (consid6r6s comme des op6rateurs d6finis sur X) sont des 

op6rateurs sym6triques (c'est h dire Vx, y E X, Va,/3 ~ R . ,  H~(G~x,y)= 

H,~ (x, G~y )) parce que 

H,~(G~,x, y ) =  (x, y ) =  (y, x )=  H,~(G,~y, x)= H,~(x, Gay). 

Nous avons encore que (G,~lx),~>0 sont des injections parce que H~,(G,~x, x)= 
(x,x) e tdonc  G~x=O~(x ,x)=O~x=O.  

Les op6rateurs (G~),,>0 ont encore la propri6t6 que pour chaque c~ > 0, Go (X) 
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est par tout  dense dans X par rappor t  /t la norme  induite par  H, .  Cet te  

proposi t ion est vraie parce  que, si nous no te rons  avec G,~(X) ~ l ' adh6rence  de 

G~(X) par  r appo r t / l  la topologie  induite par  H~ et si nous no te rons  encore  avec 

1,~ I 'or thogonal i t6  par  rappor t  au produit  scalaire H,~, alors pour  u E 

(G,,(X)~f-o on obt ient  que H~(Gov, u)=O Vv E X et donc Ho(G,~u,u)= 
(u, u)  = 0 c'est /l dire que  u = 0 et donc G,~(X) est dense dans X par  rappor t  

~H~.  

Not re  but  dans la suite sera l '6tude des relations ent re  les normes  des 

op6rateurs  ( G . ) ,  consid6r6s comme des op&ateurs  d6finis sur L2(/x) et (G ,  IxL 

(consid6r6s comme des op6ra teurs  d6finis sur X).  

PROPOSITION 1. 

H(x,x  ) = 0 alors 

(a) II Go I1o = i/a, 

(b) II ao II = am. 

Si (X, H) a la propridtd qu'il existe x / 0 ,  x E X tel que 

D I ~ M O N S T R A T I O N .  

(a) [l G .  [Is = sup,xL ~ He (G~x, x ) = supltxll~=~ (x, x)  

= supmx.~,+o~x.x,=~(L-1H(x,x) ). 
\o~ o~ 

Soit Xo avec H(xo, x0) = 0 et xo / 0. Nous  allons noter  k = I[x011~. Alors y = xo/k 
a la propr i&6 que [[ y 1[,~ = 1 et H(y, y ) =  0. On obt ient  que [[ G ,  I[- --> 1/a. 

Mais parce  que  H est une forme bilin6aire posi t ivement  d6finie, il en r6sulte 

que 11 Go I1o ~ 1/a et donc I[ Go [Is = 1/c~. 

(b) 
Ila ll = sup sup <a x,x> 

IIx J12~ l llx II 2= 1 
x E L  (l-t) x ~ X  

)= ). 
ii~,tl=l ilxll=l \ O/ O/ 
x ~ X  x E X  

Mais par  l 'hypoth6se on sait qu'il existe y / 0 tel que H(y ,  y)  -- 0 et donc on 

obt ient  qu'il  existe x avec [Ix II = 1 et tel que H(x, x ) =  0. Mais H est une forme 

bilin6aire et donc H(G~x, x)  = 0 d'ofi il en r6suite que I[ G~ [[ _-> 1/c~. Mais (G~L>o 

est une L2-r6solvante et donc on sait que I[ G~ [[ =< 1/a. On obt ient  que II IP = 1/~ 

et la proposi t ion est d6montr6e .  

PROPOSITION 2. Soit (G~)~>o une L L rdsolvante qui a la propridtd que V a > O, 
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G~ est opdrateur compact (c' est it dire qu 'il trans[orme des ensembles born~s dans 

des ensembles relati[s compacts), alors [ IG , . [ l .= l / a  r ( 3 ) x ~ O  avec 

H(x,  x)  = O. 

D~MONSTRATION. 

: c'est un cas particulier de la Proposition 1. 

sup - -(• IIGoL-- 
Ilxll.=l Ht,~.x)+tz/.)<x,x>=l \ Ot ~ / Ol " 

On obtient qu'il existe une suite (x.) .  avec x. E X  et {Ix.I[. = 1 tel que 

H ( x . , x . ) - * O  et done ( x . , x . ) ~  l /a ,  c'est h dire que (x.) .  est une suite born6e 

dans la norme canon sur L2(g). 

Mais parce que G,~ est compact il r6sulte qu'il existe une sous-suite (X.~)E avec 

la propri6t6 que (G~x.,)k est Cauchy clans L~(/x). Darts ces conditions: 

H ~ ( G . ( x . ,  - x .k , ) ,  a o ( x . ,  - x . , , ) )  = ( x ~  - x . , . ,  G o ( x . ,  - x . , , ) )  

~ 2-H~o(x~ - x.~,)H~0 
t~ 

parce que [Ix. [[ _-< (1/a)[[x, []~ = 1/a. 

Nous avons obtenu que (G~ (x.~))k est Cauchy relativement ~ la norme H~ et 

Ho(G~(x.,  - x.~,), x. k - x.~.) < 2[[ G~(x.k - x,,~,)[[,~ -~ 0, 

c'est h dire que I[ x.~ - X.k.[[ ~ 0 et done (x.,)k est Cauchy relativement h la norme 
L2 

canon et h la norme Ha, d'ofa on obtient qu'il existe x E X avec x.~ ~ x, 
H 

x~ ,xet l fx l lo=l .  

C'est 5 dire que H ( x , x ) + a ( x , x ) = l  et donc H ( x , x ) = l - a ( x , x ) =  

1 - ,~ lim. (x., x.)  = 0 et la proposition est d6montr6e. 

OBSERVATION. Si (G~)~>o est une L<r6solvante et il existe ~0 tel que G,~ soit 

op6rateur compact, il r6sulte que Va, G,~ est op6rateur compact (parce que 

Va, f l > 0 ,  ctg fl, G a - G ~  + ( a - f l ) G . G ~  =O). 

Soit maintenant E un espace topologique localement compact, Hausdorff et 

s6parable, ~ la tribu engendr6e par les ouverts et ~ une mesure de Radon. 

Nous allons noter 

~ ( E ) =  {f: E - - ~ R / f  continue et Ve >0 ,  3K~ partie 

compacte tel que f cKr <- e} 

et avec ~0(E) l 'ensemble des fonctions continues ~ support compact. 
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PROPOSITION 3. Soit (X, H )  un espace de Dirichlet rdgulier sur (E, ~ ,  IX) off E 

est un espace mdtrique compact et ix est une probabilitd (dventuelternent une rnesure 

finie ) et soit (G~),>o la L 2-rdsolvante qui correspond fi (X, H). Alors [I G~ II. = 1/a 

Dt~MONSTRATION. ( X ,  H )  est un espace de Dirichlet rdgulier et donc X A 

~g (E)  est dense dans ~g (E)  par rapport ~ la norme uniforme, d'oh on obtient que 

X N rg(E) est dense dans Cg(E) par rapport ~ la norme canon sur L2(~), donc 

X f3 Cg(E) est dense dans L2(p.) par rapport ~i la norme canon sur L2(p~) et donc 

X est dense dans L2(p~) par rapport ~ la norme canon sur L2(tt). 

Mais parce que (G~ sont des op6rateurs continus et X est dense dans 

L2(~) on obtient que: 

IIG~II = sup <G~x,x>= sup(Gox, x)>-_ sup (G~x,x) 
x E L  (,u.) x E X  H~ ( x . x ) ~  

[Ixll<= t IMI2_ < - l 

= a  sup ( G , y , y ) = a  sup H~(Goy, G~y)=~IIG~IIL. 
H .  (y.y)--<-- 1 H~ (y,y)--<-- 1 

Mais II Go I[o = 1/,~, d'o~ on obtient que II Go II > 1/,~ et donc II Go [I-- 1/,~. 
La dgmonstration de cette proposition nous donne le suivant corollaire: 

COROLLAIRE. Darts les conditions ci-dessus on obtient que II Go [I ~ ~ II G. I[~ 

II. La construction du processus (f.)~>o et ses propri6t6s 

Soit maintenant (E, g~,/z ) un espace probabilis6 06 E est un espace m&rique 

compact et g~ est la tribu engendrde par les ouverts. 

Soit ( G , ) .  une L2-r6solvante sur L2(/x). Pour chaque a > 0  et A ~ N nous 

allons d6finir /x~(A)= fG~xAd/x. 
Alors /x,~ :N- - - ,R  est une mesure positive finie et /z~ </x.  En usant le 

th6or6me de Radon-Nikodym pour chaque a > 0, on obtient qu'il existe (pour 

chaque ~ > 0) une fonction /.t-int6grable f~ tel que /x~ = fdx. 

Nous allons dire que (f,,),,>0 est le processus attach6 ~ la L 2-r6solvante (G~ L >0. 

PROPOSITION 4. 

(a) Pour chaque u E L2(lx ) on a f G,  ud/z = f f~ud/x. 

(b) f,~ = G.XE. 
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DI~MONSTRATION. 

(a) est 6vident (on v6rifie la formule pour u fonction ~-6tag6e et puis pour 

u E L2(/~) quelconque). 

(b) Ix~ (A ) = f G~xadlz = fAfod~. 
Pour B E ~ on obtient que 

c'est ~ dire que G,~Xa -< f~,/~-presque partout. 

Mais f G~xEdt~ = ff~dl.~ et donc on obtient que f,~ = G,Xz tx-presque partout, 

c'est & dire f,~ = G~X~ (dans L2(/.,)). 

OBSERVATIONS. 

(1) En usant la proposition 4, paragraphe (b) on obtient que f,~ E L2(~) et 

d 'avantage f~ E X. 

(2) Si Va > 0 ,  G,(~(E))C_ ~r alors de la m6me proposition et le m6me 

paragraphe il en r6sulte que f~ E ~ (E) .  

(3) Si (Go),~>o est une L2-r6solvante et ([~)o>o est son processus attach6, alors 

pour a >/3 il en r6sulte que fo _-< I0 ~ -presque partout parce que pour 'CA E 

f, f~d~-  fA f, dtz + ( a - / 3 )  f G~G~XAd~ =O. 

Soit (GoL>0 une L2-r6solvante et (f~).>0 son processus attach6. Alors nous 

noterons F '~ = {x @ E If~(x) = 0} et nous allons remarquer que pour Va,/3 > 0  

on a F ~ = F ~ Nous 6crivons F pour F ~. 

Supposons maintenant que (X,H) est un espace de Dirichlet fortement 

r6gulier (strongly regular), (G~),,>0 la L2-r6solvante qui correspond & cet espace 

et (Go(x,A)),,>o la L2-r6solvante de type Ray associ6e. 

PROPOSITION 5. 

(a) G~(x, �9 ) est la mesure partout nulle si et seulement si x E F. 
(b) Si u E ~ ( E )  e t x E F  ~ G~u(x)=O. 

DI~MONSTRATION. 

(a) en r6sulte du fait que dans ce cas [~(x) = G,X~(x) = G.(x,E). 
(b) en r6sulte du (a) et parce que G~u(x)=fu(y)G~(x,  dy). 

COMMENTAIRES. Le processus (f~)o>0 attach6 h la LZ-r6solvante de type Ray a 
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ia propri6t6 qu'il est form6 avec des fonctions continues, il est partout 

d6croissant (c'est h dire qu'il a t o u s l e s  trajectoires d6croissantes) et ses 

trajectoires sont continues parce que 

If.(x)-f.o(X)f=lGox~(x)-a.ox~(x)l<-_ I'~-~'~ ,0. 
OfOf 0 a ~ a o  

D'avantage, le processus (f~),>0 a des trajectoires d6rivables et 

df,~(x) = _ (GJo)(x). 
de 

Pour ao > 0 fix6, le processus ( f ~ ) ~ o  est un potentiel, de plus un potentiel de 

classe D par rapport h la base stochastique 

PROPOSITION 6. Si (X, H) est un espace de Dirichlet fortement rdgulier alors 

l' ensemble F a l'int&ieur vide. 

DEMONSTRATION. NOUS allons consid6rer la fonction Cap telle qu'elle a 6t6 

d6finie dans [2]. 

Nous allons remarquer  que dans le cas des espaces compacts, la fonction Cap a 

seulement des valeurs finies parce que l 'ensemble C1 attach6 h la r6solvante de 

type Ray a la propri6t6 qu'il existe u~, u2 , ' - ' ,  u, ~ C1 tel que XL~u~(x)>0,  

Vx E E et E~'=1 u, est une fonction continue strictement positive sur un compact, 

donc multipli6e par un nombre r6el convenablement choisi nous allons obtenir 

une fonction continue u tel que u (x) => 1, Vx ~ E. 

Le fait que CO(E) est dense dans L2(IX) nous donne que G.(qg(E)) est dense 

dans X par rapport ft la norme Ha et de ia proposition 5 il en r6sulte que pour 

chaque fonction continue u on a que G~,u (x) = 0, Vx ~ F et donc on obtient que 

chaque u E X a la propri6t6 que u = 0 Ix-presque partout sur F (parce que la 

convergence dans la norme He implique la convergence dans Lz(IX) et doric la 

convergence Ix-presque partout). 

Supposons que F n'a pas l 'int6rieur vide. Alors, du fair que IX est partout 

dense, on obtient que 

-~r = {f If  E X, f -> 1 tx-presque partout sur F} = O 

et done Cap F = + oo c'est ~ dire une contradiction avec le fait que Cap a 

seulement des valeurs finies et done la proposition est d6montr6e. 

Nous allons remarquer le fait qu'on peut donner une autre d6monstration 

cette dernibre proposition sans employer la fonction Cap. 
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PROPOSITION 7. /.t (F) = 0. 

DI~MONSTRATION. E compact  et C I C X  implique le fait qu'il  existe une 

fonction cont inue  u E X (dans le sens que sa classe appart ient  h X )  ayant  la 

propri6t6 que u ( x ) > 0 ,  Vx E 17,. 

Mais G,(C~(E))  est dense dans X par  r appo r t / t  ia norme induite par H~ et 

donc il existe une suite (G~vn), avec G~vn ~ ~ u et donc G~v, ~ u # -presque  

partout .  

I1 en r6sulte que u = 0/ ,~-presque par tout  sur F. 

Mais u > 0 par tout  sur E et donc  nous ailons obtenir  que /~ ( F ) =  0. 

COROLLAIRE. F a l'int~rieur vide parce que ~ est partout dense. 

OBSERVATION. Dans  la proposi t ion 7, nous n 'avons  pas user ie fait que / z  est 

par tout  dense, donc /x  (F) = 0 m6me si nous n 'uti l iserons pas cette axiome dans la 

d6finition des espaces de Dirichlet for tement  r6guliers. 

Pour  conclure,  dans le cas des espaces de Dirichlet for tement  r6guliers F est 

un ensemble  ferm6 avec r in t6r ieur  vide. 
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